3^x+1=18/3^x+25

Simple and best practice solution for 3^x+1=18/3^x+25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3^x+1=18/3^x+25 equation:



3^x+1=18/3^x+25
We move all terms to the left:
3^x+1-(18/3^x+25)=0
Domain of the equation: 3^x+25)!=0
x∈R
We get rid of parentheses
3^x-18/3^x-25+1=0
We multiply all the terms by the denominator
3^x*3^x-25*3^x+1*3^x-18=0
Wy multiply elements
9x^2-75x+3x-18=0
We add all the numbers together, and all the variables
9x^2-72x-18=0
a = 9; b = -72; c = -18;
Δ = b2-4ac
Δ = -722-4·9·(-18)
Δ = 5832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5832}=\sqrt{2916*2}=\sqrt{2916}*\sqrt{2}=54\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-54\sqrt{2}}{2*9}=\frac{72-54\sqrt{2}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+54\sqrt{2}}{2*9}=\frac{72+54\sqrt{2}}{18} $

See similar equations:

| (2x+1)-(3x-5)=3x+30 | | 5p-3(2+6p)=0 | | 5t+1=0 | | 3(x-5)=5x-13 | | 5x+3=2(2x-11) | | 7(3s+9)=315 | | 1(x-6)=56 | | 73s+9=315 | | 8x-18=50 | | 2x-8)(3x-9)=0 | | 32l+10=42 | | -10=13x=341 | | (y-2)(y+4)=3 | | 6(a+2)=12(5-3a) | | 4(21x+30)=60 | | -5(p+2)=2(2p-15 | | Z/2+2/3z=0 | | 3x+34=8x+4 | | 4=a/9-3 | | 3x+59=10x+3 | | 7n+5=5n+2 | | 2x+34=7x-6 | | 7n+5n=5n+25 | | (7x+1)+(9x-7)=180 | | t÷6-7=14 | | 7x-2=8x-5 | | ]15–3b+b=3 | | a÷5+3=11 | | 12x=270 | | 20x+25(1000-x)=21000 | | 4x-5x=-800 | | 1/4y+1/7=3/14 |

Equations solver categories